Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.21.572824

ABSTRACT

The evolution of SARS-CoV-2 variants with increased fitness has been accompanied by structural changes in the spike (S) proteins that are the major target for the adaptive immune response. Single-particle cryo-EM analysis of soluble S from SARS-CoV-2 variants has revealed this structural adaptation at high-resolution. The analysis of S trimers in situ on intact virions has the potential to provide more functionally relevant insights into S structure and virion morphology. Here, we characterized B.1, Alpha, Beta, Gamma, Delta, Kappa, and Mu variants by cryo-electron microscopy and tomography, assessing S cleavage, virion morphology, S incorporation, "in-situ" high-resolution S structures and the range of S conformational states. We found no evidence for adaptive changes in virion morphology, but describe multiple different positions in the S protein where amino acid changes alter local protein structure. Considered together, our data is consistent with a model where amino acid changes at multiple positions from the top to the base of the spike cause structural changes that can modulate the conformational dynamics of S.

2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.14.23295379

ABSTRACT

We report the genomic analysis of a highly divergent SARS-CoV-2 sample obtained in October 2022 from an HIV+ patient with presumably long-term COVID-19 infection. Phylogenetic analysis indicates that the sample is characterized by a gain of 89 mutations since divergence from its nearest sequenced neighbor, which had been collected in September 2020 and belongs to the B.1.1 lineage, largely extinct in 2022. 33 of these mutations were coding and occurred in the Spike protein. Of these, 17 are lineage-defining in some of the variants of concern (VOCs) or are in sites where another mutation is lineage-defining in a variant of concern, and/or shown to be involved in antibody evasion, and/or detected in other cases of persistent COVID-19; these include some "usual suspects," such as Spike:L452R, E484Q, K417T, Y453F, and N460K. Molecular clock analysis indicates that mutations in this lineage accumulated at an increased rate compared to the ancestral B.1.1 strain. This increase is driven by the accumulation of nonsynonymous mutations, for an average dN/dS value of 2.2, indicating strong positive selection during within-patient evolution. Additionally, there is reason to believe that the virus had persisted for at least some time in the gastrointestinal tract, as evidenced by the presence of mutations that are rare in the general population samples but common in samples from wastewater. Our analysis adds to the growing body of research on evolution of SARS-CoV-2 in chronically infected patients and its relationship to the emergence of variants of concern.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.02.556033

ABSTRACT

A new SARS-CoV-2 variant, designated BA.2.86, has recently emerged with over 30 spike mutations relative to its parental BA.2, raising questions about its degree of resistance to neutralising antibodies. Using a spike-pseudotyped virus model we characterise neutralisation of BA.2.86 by clinically relevant monoclonal antibodies and by two cohorts of serum sampled from Stockholm, including both a recent cohort, and one sampled prior to the arrival of XBB in Sweden.

4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.04.551867

ABSTRACT

Rationale: COVID-19 severity varies widely; children and African Americans have low and high risk, respectively. Mechanistic data from these groups and the mucosa is lacking. Objectives: To quantify mucosal and systemic viral and immune dynamics in a diverse cohort to identify mechanisms underpinning COVID-19 severity and outcome predictors. Methods: In this prospective study of unvaccinated children and adults COVID-19 outcome was based on an ordinal clinical severity scale. We quantified viral RNA, antigens, antibodies, and cytokines by PCR, ELISA, and Luminex from 579 longitudinally collected blood and nasal specimens from 78 subjects including 45 women and used modeling to determine functional relationships between these data. Measurements and Main Results: COVID-19 induced unique immune responses in African Americans (n=26) and children (n=20). Mild outcome was associated with more effective coordinated responses whereas moderate and severe outcomes had rapid seroconversion, significantly higher antigen, mucosal sCD40L, MCP-3, MCP-1, MIP-1, and MIP-1{beta}, and systemic IgA, IgM, IL-6, IL-8, IL-10, IL-15, IL-1RA, and IP-10, and uncoordinated early immune responses that went unresolved. Mucosal IL-8, IL-1{beta}, and IFN-{gamma} with systemic IL-1RA and IgA predicted COVID-19 outcomes. Conclusions: We present novel mucosal data, biomarkers, and therapeutic targets from a diverse cohort. Based on our findings, children and African Americans with COVID-19 have significantly lower IL-6 and IL-17 levels which may reduce responsiveness to drugs targeting IL-6 and IL-17. Unregulated immune responses persisted indicating moderate to severe COVID-19 cases may require prolonged treatments. Reliance on slower acting adaptive responses may cause immune crisis for some adults who encounter a novel virus.


Subject(s)
COVID-19
5.
Virus Evol ; 8(2): veac050, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-20244684

ABSTRACT

Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation. There is an apparent selective pressure for mutations that aid cell-cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted.

7.
Journal of Indian Association of Public Health Dentistry ; 21(1):4-10, 2023.
Article in English | Web of Science | ID: covidwho-2327966

ABSTRACT

The scientific community was always intrigued by the indoor air quality in dental offices. The unexpected emergence of the COVID pandemic has put greater challenges on dental professionals. Shortly after the declaration of coronavirus as a pandemic by the World Health Organization in March 2020, the American Dental Association abstained the dental society from providing routine dental procedures. An evidence-based review of the literature was conducted electronically using three databases, PubMed, Science Direct, and Google Scholar between January 2005 to December 2021. Three articles were selected for the qualitative analysis out of 41 screened articles from the databases. The evidence suggests that there is a significant reduction in aerosol generation with laser when compared to conventional treatment modalities. Laser-assisted treatment procedures bring the dentist and patients a step closer to providing safe dental treatments and reducing the risk of transmission of disease.

8.
QRB Discovery ; 3:446-452, 2022.
Article in English | EMBASE | ID: covidwho-2325245

ABSTRACT

Chapter 1: COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2;as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected.Copyright ©

9.
Arch Clin Neuropsychol ; 38(4): 570-585, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2326664

ABSTRACT

OBJECTIVE: The COVID-19 pandemic necessitated use of remote assessments by clinical neuropsychologists. Telehealth was particularly important for vulnerable groups, including persons living with HIV (PLWH); however, limited internet access can be a serious barrier to care. This study examined the preliminary validity of a telephone-based neuropsychological assessment in a clinical sample of PLWH. METHOD: A consecutive series of 59 PLWH were assessed via telephone at an HIV clinic in the southern U.S. between April 2020 and July 2022. The battery included auditory-verbal neuropsychological tests of memory, attention, and executive functions, and questionnaires assessing self-reported mood and activities of daily living (ADL). RESULTS: Study measures demonstrated acceptable internal consistency. PLWH demonstrated worse neuropsychological performance compared with expectations derived from the normal curve and an HIV-seronegative adult sample (N = 44). PLWH assessed via telephone demonstrated similar impairment rates to that of a consecutive series of PLWH (N = 41) assessed in-person immediately prior to the pandemic. Higher telephone-based global neuropsychological scores were related to younger age, more education, better fund of knowledge, White race/ethnicity, fewer medical conditions, and fewer depression symptoms. Global neuropsychological impairment was strongly and independently associated with greater dependence in ADL domains, particularly for instrumental activities. CONCLUSIONS: Although telephone-based approaches to neuropsychological assessment are not ideal, these data provide support for the feasibility, internal consistency, and preliminary validity of this method in a consecutive clinical series of PLWH. The direct comparability of telephone-based and in-person neuropsychological assessments remains to be determined by prospective, counterbalanced study designs examining both PLWH and seronegative individuals.


Subject(s)
COVID-19 , HIV Infections , Adult , Humans , Activities of Daily Living , Prospective Studies , Pandemics , Neuropsychological Tests , HIV Infections/psychology , Telephone
10.
Microb Genom ; 9(5)2023 05.
Article in English | MEDLINE | ID: covidwho-2318756

ABSTRACT

Exposure to different mutagens leaves distinct mutational patterns that can allow inference of pathogen replication niches. We therefore investigated whether SARS-CoV-2 mutational spectra might show lineage-specific differences, dependent on the dominant site(s) of replication and onwards transmission, and could therefore rapidly infer virulence of emergent variants of concern (VOCs). Through mutational spectrum analysis, we found a significant reduction in G>T mutations in the Omicron variant, which replicates in the upper respiratory tract (URT), compared to other lineages, which replicate in both the URT and lower respiratory tract (LRT). Mutational analysis of other viruses and bacteria indicates a robust, generalizable association of high G>T mutations with replication within the LRT. Monitoring G>T mutation rates over time, we found early separation of Omicron from Beta, Gamma and Delta, while mutational patterns in Alpha varied consistent with changes in transmission source as social restrictions were lifted. Mutational spectra may be a powerful tool to infer niches of established and emergent pathogens.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Mutation , Bacteria/genetics , Lung
11.
Mult Scler ; : 13524585221134216, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2318521

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a neurological disorder marked by accumulating immune-mediated damage to the central nervous system. The dysregulated immune system in MS combined with immune effects of disease-modifying therapies (DMTs) used in MS treatment could alter responses to infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). Most of the literature on immune response to SARS-CoV-2 infection and COVID-19 vaccination, in both the general population and patients with MS on DMTs, has focused on humoral immunity. However, immune response to COVID-19 involves multiple lines of defense, including T cells. OBJECTIVE AND METHODS: We review innate and adaptive immunity to COVID-19 and expand on the role of T cells in mediating protective immunity against SARS-CoV-2 infection and in responses to COVID-19 vaccination in MS. RESULTS: Innate, humoral, and T cell immune responses combat COVID-19 and generate protective immunity. Assays detecting cytokine expression by T cells show an association between SARS-CoV-2-specific T cell responses and milder/asymptomatic COVID-19 and protective immune memory. CONCLUSION: Studies of COVID-19 immunity in people with MS on DMTs should ideally include comprehensive assessment of innate, humoral, and T cell responses.

12.
Sustainability ; 15(8):6556, 2023.
Article in English | ProQuest Central | ID: covidwho-2304837

ABSTRACT

Public interest in where food comes from and how it is produced, processed, and distributed has increased over the last few decades, with even greater focus emerging during the COVID-19 pandemic. Mounting evidence and experience point to disturbing weaknesses in our food systems' abilities to support human livelihoods and wellbeing, and alarming long-term trends regarding both the environmental footprint of food systems and mounting vulnerabilities to shocks and stressors. How can we tackle the "wicked problems” embedded in a food system? More specifically, how can convergent research programs be designed and resulting knowledge implemented to increase inclusion, sustainability, and resilience within these complex systems, support widespread contributions to and acceptance of solutions to these challenges, and provide concrete benchmarks to measure progress and understand tradeoffs among strategies along multiple dimensions? This article introduces and defines food systems informatics (FSI) as a tool to enhance equity, sustainability, and resilience of food systems through collaborative, user-driven interaction, negotiation, experimentation, and innovation within food systems. Specific benefits we foresee in further development of FSI platforms include the creation of capacity-enabling verifiable claims of sustainability, food safety, and human health benefits relevant to particular locations and products;the creation of better incentives for the adoption of more sustainable land use practices and for the creation of more diverse agro-ecosystems;the wide-spread use of improved and verifiable metrics of sustainability, resilience, and health benefits;and improved human health through better diets.

13.
Cell reports ; 2023.
Article in English | EuropePMC | ID: covidwho-2257201

ABSTRACT

In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum. Graphical Dijokaite-Guraliuc et al. analyse potently neutralizing antibodies from vaccinated individuals with BA.2 breakthrough infections. The antibodies bind 3 sites on the receptor binding domain, 2 in common with early pandemic antibodies. Mutations in more recent variants map closely to these sites leading to reduced neutralization in all but one mAb.

14.
Criminology & Public Policy ; 22(1):87-96, 2023.
Article in English | ProQuest Central | ID: covidwho-2263030

ABSTRACT

In an original article, I analyzed a potential causal link between the policy of de‐prosecution in Philadelphia and an increase in homicides. Utilizing the traditional synthetic control method with extensive descriptive data and a donor pool of the other 99 largest cities in the United States, the results demonstrated a statistically significant increase of over 74 homicides per year in Philadelphia during 2015‐19 associated with de‐prosecution (p<.05). A reaction essay addressing the original article on de‐prosecution has been submitted. In this reply, I correct inaccuracies in the reaction essay, explain the validity of methodological choices, discuss the reaction's misunderstanding of certain quantitative issues, and expose the ideological purposes of the reaction. In addition, I have included updated parallel research addressing the issue of de‐prosecution and examine the theoretical impact of the Covid‐19 pandemic on the interaction between de‐prosecution and homicides.

15.
Nat Genet ; 55(3): 471-483, 2023 03.
Article in English | MEDLINE | ID: covidwho-2286470

ABSTRACT

Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Chromatin , COVID-19/genetics , DNA Helicases/genetics , Nuclear Proteins/genetics , SARS-CoV-2 , Transcription Factors/genetics
16.
JAMA ; 329(13): 1066-1077, 2023 04 04.
Article in English | MEDLINE | ID: covidwho-2260871

ABSTRACT

Importance: Randomized clinical trials (RCTs) of therapeutic-dose heparin in patients hospitalized with COVID-19 produced conflicting results, possibly due to heterogeneity of treatment effect (HTE) across individuals. Better understanding of HTE could facilitate individualized clinical decision-making. Objective: To evaluate HTE of therapeutic-dose heparin for patients hospitalized for COVID-19 and to compare approaches to assessing HTE. Design, Setting, and Participants: Exploratory analysis of a multiplatform adaptive RCT of therapeutic-dose heparin vs usual care pharmacologic thromboprophylaxis in 3320 patients hospitalized for COVID-19 enrolled in North America, South America, Europe, Asia, and Australia between April 2020 and January 2021. Heterogeneity of treatment effect was assessed 3 ways: using (1) conventional subgroup analyses of baseline characteristics, (2) a multivariable outcome prediction model (risk-based approach), and (3) a multivariable causal forest model (effect-based approach). Analyses primarily used bayesian statistics, consistent with the original trial. Exposures: Participants were randomized to therapeutic-dose heparin or usual care pharmacologic thromboprophylaxis. Main Outcomes and Measures: Organ support-free days, assigning a value of -1 to those who died in the hospital and the number of days free of cardiovascular or respiratory organ support up to day 21 for those who survived to hospital discharge; and hospital survival. Results: Baseline demographic characteristics were similar between patients randomized to therapeutic-dose heparin or usual care (median age, 60 years; 38% female; 32% known non-White race; 45% Hispanic). In the overall multiplatform RCT population, therapeutic-dose heparin was not associated with an increase in organ support-free days (median value for the posterior distribution of the OR, 1.05; 95% credible interval, 0.91-1.22). In conventional subgroup analyses, the effect of therapeutic-dose heparin on organ support-free days differed between patients requiring organ support at baseline or not (median OR, 0.85 vs 1.30; posterior probability of difference in OR, 99.8%), between females and males (median OR, 0.87 vs 1.16; posterior probability of difference in OR, 96.4%), and between patients with lower body mass index (BMI <30) vs higher BMI groups (BMI ≥30; posterior probability of difference in ORs >90% for all comparisons). In risk-based analysis, patients at lowest risk of poor outcome had the highest propensity for benefit from heparin (lowest risk decile: posterior probability of OR >1, 92%) while those at highest risk were most likely to be harmed (highest risk decile: posterior probability of OR <1, 87%). In effect-based analysis, a subset of patients identified at high risk of harm (P = .05 for difference in treatment effect) tended to have high BMI and were more likely to require organ support at baseline. Conclusions and Relevance: Among patients hospitalized for COVID-19, the effect of therapeutic-dose heparin was heterogeneous. In all 3 approaches to assessing HTE, heparin was more likely to be beneficial in those who were less severely ill at presentation or had lower BMI and more likely to be harmful in sicker patients and those with higher BMI. The findings illustrate the importance of considering HTE in the design and analysis of RCTs. Trial Registration: ClinicalTrials.gov Identifiers: NCT02735707, NCT04505774, NCT04359277, NCT04372589.


Subject(s)
COVID-19 , Venous Thromboembolism , Male , Humans , Female , Middle Aged , Heparin/adverse effects , Anticoagulants/adverse effects , Bayes Theorem , Venous Thromboembolism/prevention & control , Randomized Controlled Trials as Topic
17.
Cell Rep ; 42(4): 112271, 2023 Mar 07.
Article in English | MEDLINE | ID: covidwho-2257202

ABSTRACT

In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum.

18.
Diabetes Obes Metab ; 2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2274067

ABSTRACT

AIM: To compare adverse outcomes among COVID-19 patients with pre-existing type 2 diabetes (T2D) only, T2D and cardiovascular disease (CVD), or neither. METHODS: This retrospective cohort study used administrative claims, laboratory and mortality data from the HealthCore Integrated Research Database. Patients with COVID-19 were identified from 3 January 2020 to 31 May 2021 and stratified by the presence of T2D and CVD. Outcomes included hospitalization, intensive care unit (ICU) admission, mortality and complications following COVID-19 infection. Propensity score matching and multivariable analyses were performed. RESULTS: A total of 321 232 COVID-19 patients were identified (21 651 T2D + CVD, 28 184 T2D only, and 271 397 neither) with a mean (SD) follow-up of 5.4 (3.0) months. After matching, 6 967 patients were identified for each group, and residual baseline differences remained. Adjusted analyses showed that COVID-19 patients with T2D + CVD were 59% more probable to be hospitalized, 74% more probable to be admitted to the ICU, and had a 26% higher mortality risk than those with neither. COVID-19 patients with T2D only were 28% and 32% more probable to be admitted to the hospital and ICU than those with neither, respectively. Among all T2D + CVD patients, acute respiratory distress syndrome (31%) and acute kidney disease (24%) were observed. CONCLUSION: Our study highlights the incrementally poorer outcomes associated with pre-existing T2D + CVD in COVID-19 patients compared with those without T2D/CVD and suggests consideration of a more optimal management approach in these patients.

19.
Autoimmun Rev ; 22(5): 103310, 2023 May.
Article in English | MEDLINE | ID: covidwho-2253449

ABSTRACT

G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.


Subject(s)
Autoimmune Diseases , COVID-19 , Humans , Autoantibodies , Autoimmunity , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL